Exponential inequalities for sums of random vectors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Let  be a sequence of arbitrary random variables with  and , for every  and  be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on  and sequence .

متن کامل

Balancing Sums of Random Vectors

We study a higher-dimensional ‘balls-into-bins’ problem. An infinite sequence of i.i.d. random vectors is revealed to us one vector at a time, and we are required to partition these vectors into a fixed number of bins in such a way as to keep the sums of the vectors in the different bins close together; how close can we keep these sums almost surely? This question, our primary focus in this pap...

متن کامل

Asymptotics for dependent sums of random vectors

We consider sequences of length m of n-tuples each with k non-zero entries chosen randomly from an Abelian group or finite field. For what values of m does there exist a subsequence which is zero-sum or linearly dependent respectively? We report some results relating to these problems.

متن کامل

Maximal inequalities for centered norms of sums of independent random vectors

Let X1, X2, . . . , Xn be independent random variables and Sk = Pk i=1 Xi. We show that for any constants ak, P( max 1≤k≤n ||Sk| − ak| > 11t) ≤ 30 max 1≤k≤n P(||Sk| − ak| > t). We also discuss similar inequalities for sums of Hilbert and Banach space valued random vectors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1976

ISSN: 0047-259X

DOI: 10.1016/0047-259x(76)90001-4